
Stat 310 �– Mihai Anitescu
Lecture 8

8.4.1 OPTIMALITY
CONDITIONS FOR EQUALITY
CONSTRAINTS

IFT for optimality conditions in the
equality-only case

�• Problem:
�• Assumptions:

1. is a solution
2. LICQ: has full row rank.

�• From LICQ:
�• From IFT:

�• As a result is a solution of NLP iff
solves unconstrained problem:

�–

 (NLP) min f x() subject to c x() = 0; c : n m

x*

c x()

x* = x*
D

n m

, x*
H

m

; cH x*() m×m; cH x*() invertible.

N x*(), xD() , N x*

D()such that x N x*() xH = xD()
x* xD

*

minxD

f xD , xD()()

Properties of Mapping

�• From IFT:

�• Two important consequences

c xD , xD()() = 0 xD

c xD , xD()() + xH
c xD , xD()() xD

xD() = 0

(1) xD
xD() = xH

c xD , xD()()
1

xD
c xD , xD()()

(2)Z =
In m

xD
xD() c x()Z = 0 Im Z[] = ker c x()

First-order optimality conditions

�• Optimality of unconstrained optimization problem

�• The definition of the Lagrange Multiplier Result in
the first-order (Lagrange, KKT) conditions:

xD
f x*D , x*D()() = 0 xD

f x*D , x*D()() + xH
f x*D , x*D()() xD

x*D() = 0

xD
f x*D , x*D()() xH

f x*D , x*D()() xH
c xD , xD()()

1

T

xD
c xD , xD()() = 0

xD
f x*D , x*D()() xH

f x*D , x*D()() T
xD
c xD , xD()() xH

c x*D , x*D()() = 0

f x*() T c x*() = 0

A more abstract and general proof

�• Optimality of unconstrained optimization problem

�• Using
�• We obtain:
�• We thus obtain the optimality conditions:

DxD

f x*D , x*D()() = 0 xD
f x*D , x*D()() + xH

f x*D , x*D()() xD
x*D() = 0 x f x*()Z = 0

m s.t. x f x*()T = xc x*()T x f x*() T

xc x *() = 0

x f x*()Z = 0 x f x*()T ker ZT() = Im c x*()T
kerM ImMT ; dim kerM() + dim ImMT() = nr cols M

The Lagrangian

�• Definition
�• Its gradient

�• Its Hessian

�• Where

�• Optimality conditions:

 L x,()= f x() T c x()

L x,() = f x() T c x(), c x()T

2
L x,() = xx

2 L x,() c x()T

c x() 0

xx
2

L x,() = xx
2 f x,() i

i=1

m

xx
2 ci x,()

 L x,() = 0

Second-order conditions

�• First, note that:
�• Sketch of proof: total derivatives in :

�• Second derivatives:

ZT 2

xxL xD , xD()()Z = D2
xDxD

f xD , xD()() = 0

DxD
f xD , xD()() = xD

f xD , xD()() xD , xD()()T xD
c x*D , x*D()() =

xD
L xD , xD()(), xD , xD()()();

xH
f x*D , x*D()() = xD , xD()()T xH

c x*D , x*D()()

 xD

DxDxD
f xD , xD()() = xD

f xD , xD()() xD , xD()()T xD
c xD , xD()() =

xDxD
L xD , xD()(), xD , xD()()() + xD

xD()T xHxD
L xD , xD()(), xD , xD()()()

DD xD , xD()()T() xD
c xD , xD()()

Computing Second-Order
Derivatives

�• Expressing the second derivatives of Lagrangian

�• Solve for total derivative of multiplier and
replace conclusion follows.

xH
f x*D , x*D()() = xD , xD()()T xH

c xD , xD()()

DxD
xD , xD()()T xH

c xD , xD()() = DxD xH
f xD , xD()() xD , xD()()T

inactive
xH
c xD , xD()() =

DxD xH
L xD , xD()(), xD , xD()()T

inactive

= x
D

xH
L xD , xD()(), xD , xD()()T() +

x
D

xD()T xH xH
L xD , xD()(), xD , xD()()T()

Summary: Necessary Optimality
Conditions

�• Summary:

�• Rephrase first order:

�• Rephrase second order necessary conditions.
 xL x*, *() = 0

 xc x*()w = 0 wT
xx
2 L x*, *()w 0

L x*, *() = 0; ZT 2

xxL x*D , x*D()()Z = 0

Sufficient Optimality Conditions

�• The point is a local minimum if LICQ and the
following holds:

�• Proof: By IFT, there is a change of variables
such that

�• The original problem can be phrased as

(1) xL x*, *() = 0; (2) xc x*()w = 0 > 0 wT

xx
2 L x*, *()w w 2

u N 0() n ncu x u(); x N x*(),c x() = 0 u N 0(); x = x u()

xc x*() ux u()
u=0

= 0; Z = ux u()

minu f x u()()

Sufficient Optimality Conditions

�• We can now piggy back on theory of
unconstrained optimization, noting that.

�• Then from theory of unconstrained optimization
we have a local isolated minimum at 0 and thus the

original problem at . (following the local
isomorphism above)

u f x u()()
u=0

= xL x*, *() = 0;
uu
2 f x u()()

u=0
= ZT

xx
2 L x*, *()Z 0; Z = ux u()

x*

Another Essential Consequence
�• If LICQ+ second-order conditions hold at the

solution , then the following matrix must be
nonsingular (EXPAND).

�• The system of nonlinear equations has an
invertible Jacobian,

x*

xx
2 L x*, *() xc x*()

x
T c x*() 0

xL x*, *()
c x*()

= 0

8.4.2 FIRST-ORDER
OPTIMALITY CONDITIONS
FOR MIXED EQ AND INEQ
CONSTRAINTS

The Lagrangian

�• Even in the general case, it has the same
expression

L x() = f x() ici x()

i E A

First-Order Optimality Condition
Theorem

f x*() T

A x*() c
A x*() x

*() = 0 Multipliers are unique !!

Equivalent Form:

Sketch of the Proof

�• If is a solution of the original problem, it is
also a solution of the problem.

�• From the optimality conditions of the problem
with equality constraints, we must have (since
LICQ holds)

�• But I cannot yet tell by this argument

x*

min f x() subject to c

A x*() x() = 0

i{ }i A x*() such that f x*() i ci x

*()
i A x*()

= 0

i 0

Sketch of the Proof: The sign of the
multiplier

�• Assume now one multiplier has the �“wrong�”
sign. That is

�• Since LICQ holds, we can construct a feasible
path that �“takes off�” from that constraint
(inactive constraints do not matter locally)

�•

 j A x*() I , j < 0

c
A x*() x t()() = tej x t() Define b = d

dt
x t()t=0 cA x()b = ej

d
dt
f x t()()t=0

= f x*()T b = T
cA x()

cA x()b = j < 0

t1 > 0, f x t1()() < f x 0()() = f x*(), CONTRADICTION!!

Strict Complementarity

�• It is a notion that makes the problem look
�“almost�” like an equality.

8.5 SECOND-ORDER
CONDITIONS

Critical Cone

�• The subset of the tangent space, where the
objective function does not vary to first-order.

�• The book definition.

�• An even simpler equivalent definition.

C x*, *() = w T x*() f x*()T w = 0{ }

Rephrasing of the Critical Cone

�• By investigating the definition

�• In the case where strict complementarity holds,
the cones has a MUCH simplex expression.

w C x*, *()
ci x

*()T w = 0 i E

ci x
()T w = 0 i A x() I i

* > 0

ci x
()T w 0 i A x() I i

* = 0

w C x*, *() ci x

()w = 0 i A x()

Statement of the Second-Order
Conditions

�• How to prove this? In the case of Strict
Complementarity the critical cone is the same as
the problem constrained with equalities on
active index.

�• Result follows from equality-only case.

Statement of second-order sufficient
conditions

�• How do we prove this? In the case of strict
complementarity again from reduction to the equality
case.

 x
* = arg minx f x() subject to cA x() = 0

How to derive those conditions in
the other case?

�• Use the slacks to reduce the problem to one
with equality constraints.

�• Then, apply the conditions for equality
constraints.

�• I will assign it as homework.

min
x Rn ,z RnI ,

f (x)

s.t. cE x() = 0

cI x()
j

z j
2 = 0 j = 1,2,�…nI

Summary: Why should I care about
Lagrange Multipliers?

�• Because it makes the optimization problem in
principle equivalent to a nonlinear equation.

�• I can use concepts from nonlinear equations
such as Newton�’s for the algorithmics.

xL x*, *()
cA x*()

= 0; det
xx
2 L x*, *() xcA x*()
x
T cA x*() 0

0

Section 9
Fundamentals of Algorithms for
Constrained Optimization

9.1 TYPES OF CONSTRAINED
OPTIMIZATION
ALGORITHMS

Types of Optimization Algorithms
�• All of the algorithms solve iteratively a simpler

problem.
�– Penalty and Augmented Lagrangian Methods.
�– Sequential Quadratic Programming.
�– Interior-point Methods.

�• The approach follows the usual divide-and-
conquer approach:

�• Constrained Optimization-
�• Unconstrained Optimization
�• Nonlinear Equations
�• Linear Equations

Quadratic Programming Problems

�• Algorithms for such problems are interested to
explore because
�– 1. Their structure can be efficiently exploited.
�– 2. They form the basis for other algorithms, such as

augmented Lagrangian and Sequential quadratic
programming problems.

Penalty Methods

�• Idea: Replace the constraints by a penalty term.
�• Inexact penalties: parameter driven to infinity to

recover solution. Example:

�• Exact but nonsmooth penalty �– the penalty
parameter can stay finite.

x* = arg min f (x) subject to c x() = 0

xµ = arg min f x() + µ
2

ci
2

i E

x(); x* = limµ xµ = x*

Solve with unconstrained
optimization

x* = arg min f (x) subject to c x() = 0 x* = arg min f x() + µ ci x()

i E

; µ µ0

Augmented Lagrangian Methods

�• Mix the Lagrangian point of view with a penalty
point of view.

x* = arg min f (x) subject to c x() = 0

xµ , = arg min f x() ici
i E

x() + µ
2

ci
2

i E

x()

x* = lim * xµ , for some µ µ0 > 0

Sequential Quadratic Programming
Algorithms

�• Solve successively Quadratic Programs.

�• It is the analogous of Newton�’s method for the case
of constraints if

�• But how do you solve the subproblem? It is possible
with extensions of simplex which I do not cover.

�• An option is BFGS which makes it convex.

min p
1
2
pT Bk p + f xk()

subject to ci xk()d + ci xk() = 0 i E

ci xk()d + ci xk() 0 i I

Bk = xx

2 L xk , k()

Interior Point Methods
�• Reduce the inequality constraints with a barrier

�• An alternative, is use a penalty as well:

�• And I can solve it as a sequence of
unconstrained problems!

minx,s f x() µ log si
i=1

m

subject to ci x() = 0 i E

ci x() si = 0 i I

minx f x() µ log si

i I

+ 1
2µ

ci x() s()2
i I

+ 1
2µ

ci x()()2
i E

9.2 MERIT FUNCTIONS AND
FILTERS

Feasible algorithms

�• If I can afford to maintain feasibility at all steps,
then I just monitor decrease in objective
function.

�• I accept a point if I have enough descent.
�• But this works only for very particular

constraints, such as linear constraints or bound
constraints (and we will use it).

�• Algorithms that do that are called feasible
algorithms.

Infeasible algorithms
�• But, sometimes it is VERY HARD to enforce

feasibility at all steps (e.g. nonlinear equality
constraints).

�• And I need feasibility only in the limit; so there is
benefit to allow algorithms to move on the outside of
the feasible set.

�• But then, how do I measure progress since I have two,
apparently contradictory requirements:
�– Reduce infeasibility (e.g.)
�– Reduce objective function.
�– It has a multiobjective optimization nature!

ci x()

i E

+ max ci x(),0{ }
i I

9.2.1 MERIT FUNCTIONS

Merit function

�• One idea also from multiobjective optimization:
minimize a weighted combination of the 2
criteria.

�• But I can scale it so that the weight of the
objective is 1.

�• In that case, the weight of the infeasibility
measure is called �“penalty parameter�”.

�• I can monitor progress by ensuring that
decreases, as in unconstrained optimization.

x() = w1 f x() + w2 ci x()

i E

+ max ci x(),0{ }
i I

; w1,w2 > 0

x()

Nonsmooth Penalty Merit Functions

�• It is called the l1 merit function.
�• Sometimes, they can be even EXACT.
�•

Penalty parameter

Smooth and Exact Penalty
Functions

�• Excellent convergence properties, but very
expensive to compute.

�• Fletcher�’s augmented Lagrangian:

�• It is both smooth and exact, but perhaps
impractical due to the linear solve.

Augmented Lagrangian

�• Smooth, but inexact.

�• An update of the Lagrange Multiplier is needed.
�• We will not uses it, except with Augmented

Lagrangian methods themselves.

x() = f x() ici
i E

x() + µ
2

ci
2

i E

x()

Line-search (Armijo) for
Nonsmooth Merit Functions

�• How do we carry out the �“progress search�”?
�• That is the line search or the sufficient reduction

in trust region?
�• In the unconstrained case, we had

�• But we cannot use this anymore, since the
function is not differentiable.

f xk() f xk +
mdk() m f xk()T dk ; 0 < <1, 0 < < 0.5

Directional Derivatives of
Nonsmooth Merit Function

�• Nevertheless, the function has a directional
derivative (follows from properties of max
function). EXPAND

�• Line Search:
�• Trust Region

D x,µ(); p() = limt 0,t>0
x + tp,µ() x,µ()

t
; D max f1, f2{ }, p() = max f1p, f1p{ }

xk ,µ() xk +
m pk ,µ() mD xk ,µ(), pk();

xk ,µ() xk +
m pk ,µ() 1 m 0() m pk()();

0 < 1 < 0.5

And �…. How do I choose the
penalty parameter?

�• VERY tricky issue, highly dependent on the
penalty function used.

�• For the l1 function, guideline is:

�• But almost always adaptive. Criterion: If
optimality gets ahead of feasibility, make penalty
parameter more stringent.

�• E.g l1 function: the max of current value of
multipliers plus safety factor (EXPAND)
�–

9.2.2 FILTER APPROACHES

Principles of filters

�• Originates in the multiobjective optimization
philosophy: objective and infeasibility

�• The problem becomes:

The Filter approach

Some Refinements

�• Like in the line search approach, I cannot accept
EVERY decrease since I may never converge.

�• Modification:

 10 5

9.3 MARATOS EFFECT AND
CURVILINEAR SEARCH

Unfortunately, the Newton step may
not be compatible with penalty

�• This is called the Maratos
effect.

�• Problem:

�• Note: the closest point on
search direction (Newton)
will be rejected !

�• So fast convergence does
not occur

Solutions?

�• Use Fletcher�’s function that does not suffer
from this problem.

�• Following a step:
�• Use a correction that satisfies

�• Followed by the update or line search:

�• Since compared to
corrected Newton step is likelier to be accepted.

xk + pk +
2 �ˆpk

c xk + pk + �ˆpk() =O xk x*
3() c xk + pk() =O xk x*

2()

Section 10: Quadratic
Programming
Reference: Chapter 16, Nocedal and
Wright.

10.1 GRADIENT PROJECTIONS
FOR QPS WITH BOUND
CONSTRAINTS

Projection

�• The problem:
�• Like in the trust-region case, we look for a Cauchy

point, based on a projection on the feasible set.
�• G does not have to be psd (essential for AugLag)
�• The projection operator:

The search path

�• Create a piecewise linear
path which is feasible (as
opposed to the linear one
in the unconstrained case)
by projection of gradient.

Computation of breakpoints

�• Can be done on each component individually

�• Then the search path becomes on each
component:

Line Search along piecewise linear
path

�• Reorder the breakpoints eliminating duplicates
and zero values to get

�• The path:

�• Whose direction is:

 0 < t1 < t2 <�…

Line Search (2)

�• Along each piece, find the minimum of the
quadratic

�• This reduces to analyzing a one dimensional
quadratic form of t on an interval.

�• If the minimum is on the right end of interval,
we continue.

�• If not, we found the local minimum and the
Cauchy point.

t j 1,t j

1
2
xTGx + cT x

Subspace Minimization
�• Active set of Cauchy Point

�• Solve subspace minimization problem

�• No need to solve exactly. For example truncated
CG with termination if one inactive variable
reaches bound.

Gradient Projection for QP

Or, equivalently, if projection does not advance from 0.

